Preview

Vegetable Growing

Advanced search

FORMATION OF BIOMASS BY MICROGREENS OF GARDEN PEAS PISUM SATIVUM L. DEPENDING ON THE DURATION OF LED LIGHTING

Abstract

The article presents the research results on the formation of biomass by microgreens of garden peas, depending on the duration of LED lighting (8, 10, 12, 14 and 16 hours). It is established that the most optimal duration of LED lighting for the formation of biomass by microgreen is 14 hours. The lowest level of biomass accumulation (by 1.3 times), was characterized by microgreens grown at 8 and 10 hours of LED lighting and formed more elongated plants with a less formed stem-leaf apparatus, which reduced its marketability. The duration of LED lighting of 16 hours was optimal for experimental plants in the first week, and starting from the second week, or 8 days of cultivation, led to a decrease in biosynthesis and a slowdown in growth, which manifested in the form of twisting of leaves and a decrease in the marketable condition of microgreens by the time of harvest.

About the Authors

A. M. Pashkevich
РУП «Институт овощеводства»
Belarus


E. S. Dosina-Dubeshko
РУП «Институт овощеводства»
Belarus


O. V. Solovey
РУП «Институт овощеводства»
Belarus


V. V. Halankova
РУП «Институт овощеводства»
Belarus


References

1. Sprouts, microgreens, and edible flowers: the potential for high value specialty produce in Asia / A. W. Ebert [et al.] // Proceeding SEAVEG 2012, Chiang Mai, Thailand. – 2012. – 24–26 January (Conference paper). – P. 216–227.

2. Food system strategies for preventing micronutrient malnutrition / D. D. Miller [et al.] // Food Police. – 2013. – Vol. 42. – P. 115–128.

3. Микрозелень – новая категория органической овощной продукции / А. М. Пашкевич [и др.] // Научно-инновационные основы развития отрасли овощеводства : тез. докл. Междунар. науч.-практ. конф., аг. Самохваловичи, Минский район, 14–16 авг., 2018 г. – Самохваловичи, 2018. – С. 25–28.

4. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces / E. Pinto [et al.] // Journal of Food Composition and Analysis. – 2015. – Vol. 37. – P. 38–43.

5. ФАО объявляет о начале провозглашенного ООН Международного года овощей и фруктов [Электронный ресурс]. – Режим доступа: http:// www.fao. org /news /story /ru/item/ 1365067/ icode/. – Дата доступа: 28.02.2021.

6. Микрозелень, или система земледелия без почвы / М. И. Иванова [и др.] // Гавриш. – 2016. – № 6. – С. 34–42.

7. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens / Z. Xiao [et al.] // Postharvest Biology and Technology. – 2015. – Vol. 110. – P. 140–148.

8. Achievements and challenges in improving the nutritional quality of food legumes / M. C. Vaz Patto [et al.] // Critical reviews in plant sciences. – 2015. – Т. 34. – № 1–3. – С. 105–143.

9. Microgreens: A new specialty crop / D. Treadwel [et al.] // University of Florida (Conference paper). – 2010. – P. 1164.

10. Micro-scale vegetable production and the rise of microgreens / M. C. Kyriacou [et al.] // Trends in Food Science & Technology. – 2016. – Vol. 57. – P. 103–115.

11. Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Su plemental PAR from Light-emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada / J. Chase [et al.] // Scientia Horticulturae. – 2020. – Vol. 55. – P. 156–163.

12. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens / X. Zhang [et al.] // Trends in Food Science & Technology. – 2020. – Vol. 99. – Р. 1–15.

13. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens / A. Lobiuc [et al.] // Molecules. – 2017. – Vol. 22 (2111). – Р. 1–14.

14. Changes in mineral element content of microgreens cultivated under different lighting conditions in a greenhouse / A. Brazaitytė [et al.] // Acta Horticulturae. – 2018. – Vol. 1227. – P. 507–516.

15. Comparison of LED and HPS illumination effects on cultivation of red pak choi microgreens under indoors and greenhouse conditions / A. Brazaitytė [et al.] // Acta Horticulturae. – 2020. – Vol. 1287. – P. 395–402.

16. Growth and morphology responses to narrow-band blue light and its co action with low-level UVB or green light: A comparison with red light in four microgreen species / K. Yun [et al.] // Environmental and Experimental Botany. – 2020. – Vol. 178 (104189). – Р. 1–11.

17. Light Intensity and Light quality from Sole-source Light-emitting Diodes Impact Phytochemical Concentrations within Brassica Microgreens / J. K. Craver [et al.] // Journal of the American Society for Horticultural Science. – 2017. – Vol. 142 (1). – P. 3–12.

18. Физика оптических излучений и светотехника. Фотобиологически активное излучение. Размеры, условные обозначения и спектры действия: Стандарт DIN5031-10-2018. – Введ. 01.03.2018. – М. : Рос. ин-т стандартизации, 2018. – 102 с.

19. Доспехов, Б. А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б. А. Доспехов. – 5-е изд., доп. и перараб. – М. : Агропромиздат, 1985. – 351 с.

20. Светокультура растений: биофизические и биотехнологические основы / А. А. Тихомиров [и др.]. – Новосибирск : Изд. Сиб. отд. РАН, 2000. – 213 с.


Review

For citations:


Pashkevich A.M., Dosina-Dubeshko E.S., Solovey O.V., Halankova V.V. FORMATION OF BIOMASS BY MICROGREENS OF GARDEN PEAS PISUM SATIVUM L. DEPENDING ON THE DURATION OF LED LIGHTING. Vegetable Growing. 2021;29:147-156. (In Russ.)

Views: 247


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0201-8411 (Print)